首页 > 其他百科 > 

初二数学平方根知识点

2023-01-25   来源:万能知识网

初二数学平方根知识点

初中生学习数学整理重点知识点是非常必要的,下面是小编帮大家整理的初二数学平方根知识点,仅供参考,大家一起来看看吧。


【资料图】

初二数学平方根知识点 篇1

一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

如果一个数的平方等于a,那么这个数叫做a的平方根。0的平方根是0。负数在实数范围内不能开平方,只有在正数范围内,才可以开平方根。例如:—1的平方根为i,—9的平方根为3i。

平方根包含了算术平方根,算术平方根是平方根中的一种。

平方根和算术平方根都只有非负数才有。

被开方数是乘方运算里的幂。

求平方根可通过逆运算平方来求。

开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。

总结:一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。

初二数学平方根知识点 篇2

算术平方根的双重非负性

1。√a中a≧0

2。√a≧0

算术平方根产生 根号(即算术平方根)的产生源于正方形的对角线长度“根号二”,这个 “根号二”的发现 一度引起了毕达哥拉斯学派的恐慌。因为按当时的权威解释(也就是毕达哥拉斯学派的学说),世界的一切事物都可以用有理数代表。

对于这个无理数“根号二”,最终人们选取了用根号来表示

算术平方根举例

9的平方根为±3 ;9的算术平方根为3,正数的平方根都是前面加±,算术平方根全部都是正数。

算术平方根辨析

算术平方根和平方根是大家学习实数接触最多的概念,两者密不可分。可对于初学者来说是对“孪生杀手”,很容易在解题过程中产生错误。算术平方根和平方根到底有哪些区别与联系呢?

一、 两者区别

1、定义不同:⑴一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根(arithmetic square root)。⑵一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root)。这就是说,如果x2=a,那么x叫做a的平方根。

2、表示方法不同:⑴a的算术平方根记为√a ,读作“根号a”,a叫做被开方数(radicand)。⑵a的平方根记为±√a,读作“正负根号a”,其中a叫做被开方数。

3、个数不同:从形式上看,二者的"符号主体相似,但是一个数的平方根要在其算术平方根的前面写上“±”。这也正好说明了一个正数和零的算术平方根有且只有一个,而一个正数却有两个互为相反数的平方根。零只有一个平方根

二、 两者联系

1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。

2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。

3、0的算术平方根和平方根相同,都是0。

初二数学平方根知识点 篇3

一、勾股定理

勾股定理:直角三角形两直角边的平方和等于斜边的平方。

我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。结论为:“勾三股四弦五”。

a2+b2=c2

2221、如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。

2222、满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股

数)。利用勾股数可以构造直角三角形。

二、平方根

1、定义——一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的平方根。

2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。

3、求一个数a的平方根的运算,叫做开平方。

4、正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。

例如:4的平方根是±2,其中2叫做4的算术平方根,记作=2;2的平方根是±其中2的算术平方根。

0只有一个平方根,0的平方根也叫做0的算术平方根

三、立方根

1、定义——一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作“,读作“三次根号a”。

2、求一个数a的立方根的运算,叫做开立方。

3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。

四、实数

1、无限不循环小数称为无理数。

2、有理数和无理数统称为实数。

3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。

五、近似数与有效数字

1、例如,本册数学课本约有100千字,这里100是一个近似似数。

2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

推荐词条